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LETTER TO THE EDITOR 
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Kowalewski-Chaplygin-Goryachev top 
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t Department of Theoretical Physics, Institute of Physics, Leningrad State University, 
Leningrad 199034, USSR 
t D V Efremov Scientific-Research Institute of Electro-Physical Apparatus, Leningrad 
189631, USSR 

Received 19 May 1988 

Abstract. We present L operators both for the special case of Neumann’s system and the 
Kowalewski-Chaplygin-Goryachev top. These are quantum systems integrable by the 
quantum inverse scattering (R-matrix) method. L operators, being 2 x 2 matrices, satisfy 
an algebra generated by an R matrix of the X X X  type. The close connection between the 
two models is demonstrated. We carry out a non-obvious separation of variables and also 
give a dynamical group scheme for the eigenstate problem of Neumann’s system. This 
separation differs from those in Euler angles and allows us to find eigenenergies in an 
effective way. 

The quantum inverse scattering method (QISM) worked out by Faddeev and his 
collaborators provides a general scheme for studying integrable models of statistical 
physics, quantum field theory and finite-dimensional quantum mechanics [ 1, 21. To 
study eigenstates of constants of motion in QISM the algebraic Bethe ansatz is usually 
applied, but there are such integrable systems for which the algebraic Bethe ansatz 
does not work due to the non-existence of an invariant vacuum state. For such cases 
the special procedure of separation of variables in QISM was introduced [3-51. It was 
called a ‘functional Bethe ansatz’. 

The main object of QISM is an associative algebra defined by the generators Talp(u)  
(0 ,  p = 1, . . . , d ;  U E @) considered as the elements of the square matrix T (  U )  with the 
commutational relation 

1 2  2 
R( U - U) T( U )  T( U) = T( U )  .f.( u ) R (  U - U )  (1) 

where 

The matrix R ( u )  E Aut(Cd @ e d )  is a solution of the quantum Yang-Baxter equation 
[ 11. The constants of motion are extracted from the trace of the matrix T (  U). 

Let us consider the simplest case, d = 2, when T ( u )  is the 2 x 2 matrix 
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and R ( u )  is the R matrix of the X X X  type as follows: 

/1 0 0 o\ 

In this letter a new representation of algebra T ( u )  ( L  operator) is constructed for a 
given R matrix (3). This new L operator is connected to the integrable model which 
is a special case of Neumann’s system in quantum mechanics. The Hamiltonian has 
the form 

H = $ ( J :  + J :  - b2x:) + a / x : .  (4) 
Variables Ji, x i ,  i = 1,2,3, are generators of the Lie algebra e(3) obeying the following 
commutation relations: 

[ J , ,  A] = - i&j jkJk  [Jj, xj]  = -i&jjkxk [ X i ,  X i ]  = 0. ( 5 )  

Further, we restrict the values of the Casimir operators by 
3 3 

u 2 =  c x:=1 I = XjJj = 0. 
i = l  i = l  

The classical model similar to (4) was studied, for instance, in [ 6 ] .  Having the L 
operator we carry out separation of variables [3-51 and also give the dynamical group 
G = SO(2.1) x SO(2.1) for this system. The separation proposed allows us to numeri- 
cally compute the spectrum of energy more effectively than using the usual procedure 
of eigenfunction factorisation in Euler angles. Indeed, in our approach we obtain both 
the separation of variables or eigenfunction factorisation and also the suitable basis 
for eigenfunctions of the separated one-dimensional spectral problems. 

Recently Sklyanin [ 7 ]  described a new class of boundary conditions for quantum 
systems integrable by means of QISM. Two algebras Y*( U )  are analogues of the algebra 
T ( u )  in (1) 

2 2 1 
~ ( u  - u ) h - ( u ) ~ ( u  + u -ix)Y-(v) = ~ - ( v ) ~ ( u  + v -ix)Y-(u)R(u - v )  ( 7 a )  

2 2 
R (  -U + v )  &;( u ) R (  -U - v - ix)  Y)( U )  = Y2( v ) R (  - U  - v - ix)  k:( u ) R (  - U + U )  ( 7 b )  
where t l  and t2 are the matrix transpositions in the first and second spaces, respectively. 
The quantities T (  U )  = Tr Y+( u)Y-( U )  defined in the direct product Y+ x 9- form a 
commutative family [ ~ ( u , ) ,  7 ( u 2 ) ]  = O  for any ul ,  u2 (theorem 1 in [ 7 ] ) .  Hence ~ ( u )  
is the generating function of the constants of motion. 

Representations of the algebras Y*( U )  can be constructed having that of the algebra 
T ( u )  (1) and that of the algebras Y*(u) in @ I ,  i.e. c-number matrices [7]. In this 
manner, we connect the special case of Neumann’s system with another integrable 
model which we call the Kowalewski-Chaplygin-Goryachev top ( KCGT). The Hamil- 
tonian of KCGT is 

H = $ ( J : + J ~ + 2 J : ) + c , x , + C 2 X 2 + C ~ ( X : - X : ) + C ~ X 1 X ~ + C * / X :  (8) 

where ci, i = 1,. , . , 5 ,  are arbitrary constants. Notice that the system is integrable 
provided that 1 = Z:=, xiJi = 0. In the case c3 = c4 = c5 = 0 KCGT turns into Kowalewski’s 
top. In the classical mechanics the integrability of the dynamical Euler equations for 
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KCGT was established by Chaplygin for special values c4= c, = 0 in 1903 [8] and in 
the general case by Goryachev in 1916 [9]. In this letter we find representations of 
the algebras Y*(u) for KCGT. 

Let us consider the following ansatz for the L operator: 

A B  YOU2 + Y2U + Yl Y:U + y: 
Y3 

( 9 )  

where y: = y4 f iy,, y; = y6 f iy, and yo, . . . , y7 are eight not yet defined affine variables. 
Suppose that the L operator satisfies equation (1) of the R-matrix quadratic algebra. 
It generates some quadratic algebra A(2) for y, analogous to 9 in [lo]. The algebra 
A(2) has the centre 

Q O = Y O  

Qi =YOY,-Y:-Y: 

The quantum determinant [2] of the L operator is the generating function of the centre 
elements and has the form 

d ( U )  = A(  U + iix ) D( u - fix) - B ( u + f i x )  C ( U - iix ) 

= Q ~ u ~ + Q ~ u - ~ ~ + $ x ~ Q ~ .  (11) 
So, as yo belongs to the centre, we can see that, in the limit yo+ 0, the quadratic algebra 
A(2) contracts to sl(2, C).  Moreover, its real form is fixed by the conditions d = - x ,  
(xy)* = y*x* for any x, y E A") and, under the additional restriction Q2 = 0, turns into 
the Lie algebra so(2.1). 

There are two natural realisations of the quadratic algebra A(2) by generators of 
the Lie algebras p(l.l)CDp(l.l) and e(3). The algebra ~ ( 1 . 1 ) ~ ~  with generators p,, e:, 
n = 1,2, obeying commutation relations 

[ p,, e:] = *ixe;Snk [Pn,Pkl=[e:, e:l=o e:e,=1 (12) 
is connected to A") by the following equations: 

Yo= 1 y; = -e :  

Yl = PIP2 - &e; y4 = e; 

Y2 = -(PI + P2) Y:= P2e: 
y, = - eye :  

Q o =  1 Q 1 = Q 2 = O  Q3 = -1. (14) 

Y a  = -Pie; 
The centre elements (10) have the values 

Generators Ji ,  x, ( 5 )  of the Lie algebra e(3), provided that I = X;=, x, J, = 0, define 
that of A(23 as follows ( x  = 2i): 

yo= 1 y4=ibxl 

y ,  = -(J:+J:+$+2a/x:) y, = ibxz 

y2 = -2 J 3  y6 = -+ib{x3, J ~ }  

y3 = b2x: ,v7 = -iib{x3, J2} 

(15) 
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where CY, b are arbitrary constants. The centre elements (10) now take the values 

Qo= 1 Q1 = b2 Q 2 = O  Q3 = b2(2a -$). (16) 
Affine variables y ,  were originally used by Bechlivanidis and van Moerbeke [ l l ]  
without any discussion of their algebraic properties. 

In terms of p( l . l )@p( l . l )  algebra (13) the L operator (9) coincides with the 
monodromy matrix of the quantum periodic Toda lattice with two particles [4] and 
will not be considered further. In the e(3) realisation (15) the L operator acquires the 
form 

A B u ~ - ~ J ~ u - J : - J : - ~ - ~ c Y / x , ~  ib(x+u-h{x3, J + } )  
L ( U ) = (  C D ) = (  ib(x-u-i{x,,J-}) b2x: 

where x, = x1 * ixz, J ,  = J1 f iJ2. The trace T( U )  of L( U )  is the generating polynomial 
of the constants of motion 

T(U) = u2 - 2Gu - 2( H +i) 
H = i ( J : + J i -  b2X:)+a/x: (18) 

G=J,. 

Thus L ( u )  corresponds to the special case of Neumann’s system. 
To find eigenstates of .(U) in (18) we apply the method of separation of variables 

worked out in [3, 41 and developed in [5]. Separated variables are determined as 
commuting roots of the operator equation C (  U )  = 0. This equation for the L operator 
(17) has one nilpotent root, in contrast to the Goryachev-Chaplygin top and the Tad? 
lattice [3-51. To overcome this difficulty we transform the L operator (17) into the L 
operator 

where ui are Pauli matrices. L( U )  satisfies equation (1) with t_he same R matrix (3), 
the trace of Z(U) coincides with that of L ( u ) ,  and therefore L ( u )  describes just the 
same dynamical system. The quantum determinant d (  U )  of L( U )  is 

d ( u )  = b*(u2-:-2a). (20) 

e ( U ) = O  (21) 

~ 1 , 2  = J 3  + bx2 f [ (J3 + b~2)’ + J :  + a + ~ C X / X :  + (52 - b ~ 3 ) ~ ] ” ~ .  

Commuting separated variables are now defined as roots of the square equation 

and are given by 

(22) 

Variables u ~ , ~  are Hermitian operators provided that CY 3 -4; otherwise the operator 
under the square root is not positively defined. 

Let us introduce twc operator? mf for each uj using Lagrange interpolation of the 
operator polynomials A( U )  and D( U )  as follows: 

u 1 - U  - 1 
( U1 - U p  m2 ( U1 - u 2 y 2  A ( u )  =$(U - U I ) ( U  - u2) + 

U - U2 1 + - 

( U1 - u2)1/2 ” ( u1 - U2)’” 
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u 1 - U  + 1 
& U )  = ; ( U  - U I ) ( U  - u2) + 

( U1 - u2)1/2 m 2  ( U ]  - u2)1’2 

Explicit formulae for mf are 

where the left substitution of u1,2 in A( U )  and fi( U )  is chosen. Notice that the difference 
u1 - u2 is positively defined. Operators uJ, m: possess the following properties: 

(m:)” = my U ;  = UJ (25) 

L m ; 9  m ; l = [ u J 9  ‘ k l = O  (26b) 

Em:, ukl= *2SJkmt 

mJ-m: = d(uJ - 1) m:mJ- = d ( U, + 1) ( 2 6 ~ )  

where d ( u )  is the quantum determinant (20). Equations (25) and (26) are derived 
from the fundamental relation (1) by means of the technique developed in [3,4]. The 
rewriting of the L operator in terms of U,, m; is single-valued. 

Notice that the operators 

zi3) =fun  

obey the standard commutation relations of algebra g = s0(2.1)0s0(2.1) 

[ Z g ) ,  Z‘,p’] = -iSmnEapy AysZ‘,s’ A=diag(-1, -1 , l )  (28) 

and the Casimir operators are 

(29) Cn = A  z(’Y)z(p) = - 3 + 1  
YP n n 16 2~ = j ( j + l )  

where equations (20), (26c) and (27) were used. Eventually we have two Lie algebras 
so(2.1) with Hermitian generators (27). Consider discrete D* series of unitary irreduc- 
ible representations of so(2.1). In accordance with (29) we are interested in the 
following ‘spins’: 

j =-i*(’+’ 16 2CY)1’2* (30) 

In order to stay in the D* series of irreducible representations of so(2.1) we have to 
restrict CY by 

(31)  3 -is CY < g .  
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Then choosing a representation in which compact generators Z',"' = fu, are diagonal, 
'spin' values j ,  (30) define the spectrum S of operators u1,2 which consists of the two 
semi-infinite equidistant lattices S = S+ U S- 

s + = { ( u , ,  U ~ ) E I W ~ :  ( u l ,  u2)=(-2j,+2nl,2j,-2n2),  n,, n 2 = 0 ,  1 , 2 , . .  .} (32) 

where we put D+ for u1 and D- for u2 in accordance with the inequality u1 > ut (22). 
The eigenfunction space of the system can be realised as the space T2(S) of square- 
summable functions on the spectrum s: 

3 2 ( S )  = f (u1 ,  u2): (U1 , U21 E S, c If(% , U 2 W } .  i ( U I . U 2 ) E S  
(33) 

It is easy to check that the operators m z ,  acting on eigenfunctions cp of U,, 

(U,cp)(Ul  Y u2) = U f l d U I  9 U21 

as follows: 

obey all the relations (25) and (26). Further, we consider the spectral problem for 
the generating function T( U )  = A( U )  + d( U )  = u2 -2Gu - 2( H +Q). It has the form 
(see (23)) 

( t ( u ) f ) ( u , ,  u2> 

= (U - %)(U - U 2 ) f ( U I  , u2) 

+ ( u - u 2 ) ( u l  - ~ ~ ) - ' ~ ' ( m ~ + m ; ) ( u , - ~ , ) - ' ~ ~ f ( ~ ~ ,  u2) 

+ ( u l - u ) ( u I  - u 2 ) - ' / * ( m : + m ; ) ( u ,  - u ~ ) - I / ~ ~ ( u , ,  U*) (35) 

where f~ Z2(S) is the eigenfunction of ~ ( u )  and t ( u )  = U'-2mu -2(h +{), where m, 
h are eigenvalues of G and H, respectively. It appears that, for the separation of 
variables U, and u2 ,  we ought to write 

f(U1 9 U21 = (U1 - u2)1/2cp(ul 9 u2). (36) 

Now, considering U = U,, n = 1,2,  in (35), we have two separated one-dimensional 
equations: 

t(u,)cp,(u,) = d1'2(u,, - 1 ) c p n ( %  --2)+d'/2(U, + 1)cp,(ufl +2)  

$44, U21 = cpI(UI)cp2(U2). (38) 

(37) 

where the function cp(u,, u2)  is factorised: 

Such a form of the function cp(u,, u2) allows us to say something about separation of 
variables and reflects the structure of the direct sum of the algebra (27) g = so(2.1)O 

Two one-dimensional spectral problems are the three-term recursion relations for 
the coefficients p,(u,) ,  where the variables u , , ~  belong to the lattice S depending on 
the value of a. A complete numerical calculation of the eigenstates will be published 
elsewhere. 

so(2.1). 
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In conclusion we connect the special case of Neumann's system governed by the 
Hamiltonian (18) with KCCT (8) and construct the L operator of the latter. In our 
case the representations of the algebras Y*(u) are 

Y-(U) = L ( U ) K - ( U  -$ix)a2~'(-u)a2 

Y+(u) = K+(u++ix) 
(39) 

where L ( u )  is the L operator (17) and the c-number matrices K , ( u )  have the form 

where ai, pi are arbitrary complex constants. Then the generating function ~ ( u )  = 
Tr Y+(u)Y-(u) of the constants of motion gives us an integrable system with the 
Hamiltonian of KCGT 

H =~(J:+J:+2J:)+c,x,+C2X2+C~(X:-X:)+C~X1X2+C~/X: (41) 

where c1 =fib(a2-a1) ,  c 2 = $ b ( a 1 + a 2 ) ,  c 3 =  -ab2(/31+/32), c4=$b2i(p2-/3,), c 5 =  a. 
The separation of variables for KCGT is still unknown. 

We are indebted to I V Komarov and E K Sklyanin for help in preparing this letter. 

Note added in proof: We must mention that the eigenfunctions of T(U) in (18) in terms of Euler angles are 
connected to the special polyspheroidal harmonics. 
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