A special case of Neumann's system and the Kowalewski-Chaplygin-Goryachev top

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L73
(http://iopscience.iop.org/0305-4470/22/3/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 07:46

Please note that terms and conditions apply.

## LETTER TO THE EDITOR

# A special case of Neumann's system and the Kowalewski-Chaplygin-Goryachev top 

V B Kuznetsov ${ }^{\dagger}$ and A V Tsiganov $\ddagger$<br>$\dagger$ Department of Theoretical Physics, Institute of Physics, Leningrad State University, Leningrad 199034, USSR<br>$\ddagger$ D V Efremov Scientific-Research Institute of Electro-Physical Apparatus, Leningrad 189631, USSR

Received 19 May 1988


#### Abstract

We present $L$ operators both for the special case of Neumann's system and the Kowalewski-Chaplygin-Goryachev top. These are quantum systems integrable by the quantum inverse scattering ( $R$-matrix) method. $L$ operators, being $2 \times 2$ matrices, satisfy an algebra generated by an $R$ matrix of the $X X X$ type. The close connection between the two models is demonstrated. We carry out a non-obvious separation of variables and also give a dynamical group scheme for the eigenstate problem of Neumann's system. This separation differs from those in Euler angles and allows us to find eigenenergies in an effective way.


The quantum inverse scattering method (Qism) worked out by Faddeev and his collaborators provides a general scheme for studying integrable models of statistical physics, quantum field theory and finite-dimensional quantum mechanics [1, 2]. To study eigenstates of constants of motion in QISM the algebraic Bethe ansatz is usually applied, but there are such integrable systems for which the algebraic Bethe ansatz does not work due to the non-existence of an invariant vacuum state. For such cases the special procedure of separation of variables in QISM was introduced [3-5]. It was called a 'functional Bethe ansatz'.

The main object of QISM is an associative algebra defined by the generators $T_{\alpha \beta}(u)$ ( $\alpha, \beta=1, \ldots, d ; u \in \mathbb{C}$ ) considered as the elements of the square matrix $T(u)$ with the commutational relation

$$
\begin{equation*}
R(u-v) \frac{1}{T}(u)^{2} T(v)=\frac{2}{T}(v) \frac{1}{T}(u) R(u-v) \tag{1}
\end{equation*}
$$

where

$$
\stackrel{1}{T}(u)=T(u) \otimes I_{d} \quad \stackrel{2}{T}(v)=I_{d} \otimes T(v) .
$$

The matrix $R(u) \in \operatorname{Aut}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$ is a solution of the quantum Yang-Baxter equation [1]. The constants of motion are extracted from the trace of the matrix $T(u)$.

Let us consider the simplest case, $d=2$, when $T(u)$ is the $2 \times 2$ matrix

$$
T(u)=\left(\begin{array}{cc}
A & B  \tag{2}\\
C & D
\end{array}\right)(u) \quad \tau(u)=A(u)+D(u)
$$

and $R(u)$ is the $R$ matrix of the $X X X$ type as follows:

$$
R(u)=u+\mathrm{i} x P \quad P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0  \tag{3}\\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad x \in \mathbb{C}
$$

In this letter a new representation of algebra $T(u)$ ( $L$ operator) is constructed for a given $R$ matrix (3). This new $L$ operator is connected to the integrable model which is a special case of Neumann's system in quantum mechanics. The Hamiltonian has the form

$$
\begin{equation*}
H=\frac{1}{2}\left(J_{1}^{2}+J_{2}^{2}-b^{2} x_{3}^{2}\right)+\alpha / x_{3}^{2} . \tag{4}
\end{equation*}
$$

Variables $J_{i}, x_{i}, i=1,2,3$, are generators of the Lie algebra e(3) obeying the following commutation relations:

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=-\mathrm{i} \varepsilon_{i j k} J_{k} \quad\left[J_{i}, x_{j}\right]=-\mathrm{i} \varepsilon_{i j k} x_{k} \quad\left[x_{i}, x_{j}\right]=0 \tag{5}
\end{equation*}
$$

Further, we restrict the values of the Casimir operators by

$$
\begin{equation*}
a^{2}=\sum_{i=1}^{3} x_{1}^{2}=1 \quad l=\sum_{i=1}^{3} x_{i} J_{i}=0 \tag{6}
\end{equation*}
$$

The classical model similar to (4) was studied, for instance, in [6]. Having the $L$ operator we carry out separation of variables [3-5] and also give the dynamical group $G=\mathrm{SO}(2.1) \times \mathrm{SO}(2.1)$ for this system. The separation proposed allows us to numerically compute the spectrum of energy more effectively than using the usual procedure of eigenfunction factorisation in Euler angles. Indeed, in our approach we obtain both the separation of variables or eigenfunction factorisation and also the suitable basis for eigenfunctions of the separated one-dimensional spectral problems.

Recently Sklyanin [7] described a new class of boundary conditions for quantum systems integrable by means of QISM. Two algebras $\mathscr{T}_{ \pm}(u)$ are analogues of the algebra $T(u)$ in (1)
$R(u-v)^{\frac{1}{\mathscr{T}}}-(u) R(u+v-\mathrm{i} \chi)^{\mathscr{T}_{-}}(v)={\underset{\mathscr{T}}{-}}^{-}(v) R(u+v-\mathrm{i} \chi)^{\frac{1}{\mathscr{T}}}-(u) R(u-v)$

where $t_{1}$ and $t_{2}$ are the matrix transpositions in the first and second spaces, respectively. The quantities $\tau(u)=\operatorname{Tr} \mathscr{T}_{+}(u) \mathscr{T}_{-}(u)$ defined in the direct product $\mathscr{T}_{+} \times \mathscr{T}_{-}$form a commutative family $\left[\tau\left(u_{1}\right), \tau\left(u_{2}\right)\right]=0$ for any $u_{1}, u_{2}$ (theorem 1 in [7]). Hence $\tau(u)$ is the generating function of the constants of motion.

Representations of the algebras $\mathscr{T}_{ \pm}(u)$ can be constructed having that of the algebra $T(u)$ (1) and that of the algebras $\mathscr{T}_{ \pm}(u)$ in $\mathbb{C}^{1}$, i.e. $c$-number matrices [7]. In this manner, we connect the special case of Neumann's system with another integrable model which we call the Kowalewski-Chaplygin-Goryachev top (ксGт). The Hamiltonian of KCGT is

$$
\begin{equation*}
H=\frac{1}{2}\left(J_{1}^{2}+J_{2}^{2}+2 J_{3}^{2}\right)+c_{1} x_{1}+c_{2} x_{2}+c_{3}\left(x_{1}^{2}-x_{2}^{2}\right)+c_{4} x_{1} x_{2}+c_{5} / x_{3}^{2} \tag{8}
\end{equation*}
$$

where $c_{i}, i=1, \ldots, 5$, are arbitrary constants. Notice that the system is integrable provided that $l=\sum_{i=1}^{3} x_{i} J_{i}=0$. In the case $c_{3}=c_{4}=c_{5}=0$ KCGT turns into Kowalewski's top. In the classical mechanics the integrability of the dynamical Euler equations for

KCGT was established by Chaplygin for special values $c_{4}=c_{5}=0$ in 1903 [8] and in the general case by Goryachev in 1916 [9]. In this letter we find representations of the algebras $\mathscr{T}_{ \pm}(u)$ for KCGT.

Let us consider the following ansatz for the $L$ operator:

$$
L(u)=\left(\begin{array}{cc}
A & B  \tag{9}\\
C & D
\end{array}\right)(u)=\left(\begin{array}{cc}
y_{0} u^{2}+y_{2} u+y_{1} & y_{4}^{+} u+y_{6}^{+} \\
y_{4}^{-} u+y_{6}^{-} & y_{3}
\end{array}\right)
$$

where $y_{4}^{ \pm}=y_{4} \pm \mathrm{i} y_{5}, y_{6}^{ \pm}=y_{6} \pm \mathrm{i} y_{7}$ and $y_{0}, \ldots, y_{7}$ are eight not yet defined affine variables. Suppose that the $L$ operator satisfies equation (1) of the $R$-matrix quadratic algebra. It generates some quadratic algebra $\mathrm{A}^{(2)}$ for $y_{n}$ analogous to $\mathscr{F}$ in [10]. The algebra $\mathrm{A}^{(2)}$ has the centre

$$
\begin{align*}
& Q_{0}=y_{0} \\
& Q_{1}=y_{0} y_{3}-y_{4}^{2}-y_{5}^{2} \\
& Q_{2}=y_{2} y_{3}-2 y_{4} y_{6}-2 y_{5} y_{7}  \tag{10}\\
& Q_{3}=y_{6}^{2}+y_{7}^{2}-\frac{1}{2}\left\{y_{1}, y_{3}\right\}+\frac{1}{2} x^{2} y_{0} y_{3} \\
& \left\{y_{i}, y_{k}\right\}=y_{i} y_{k}+y_{k} y_{i} .
\end{align*}
$$

The quantum determinant [2] of the $L$ operator is the generating function of the centre elements and has the form

$$
\begin{align*}
d(u) & =A\left(u+\frac{1}{2} i x\right) D\left(u-\frac{1}{2} \mathrm{i} x\right)-B\left(u+\frac{1}{2} \mathrm{i} x\right) C\left(u-\frac{1}{2} \mathrm{i} x\right) \\
& =Q_{1} u^{2}+Q_{2} u-Q_{3}+\frac{1}{4} x^{2} Q_{1} . \tag{11}
\end{align*}
$$

So, as $y_{0}$ belongs to the centre, we can see that, in the limit $y_{0} \rightarrow 0$, the quadratic algebra $\mathrm{A}^{(2)}$ contracts to $\mathrm{sl}(2, \mathbb{C})$. Moreover, its real form is fixed by the conditions $\bar{x}=-x$, $(x y)^{*}=y^{*} x^{*}$ for any $x, y \in \mathrm{~A}^{(2)}$ and, under the additional restriction $Q_{2}=0$, turns into the Lie algebra so(2.1).

There are two natural realisations of the quadratic algebra $A^{(2)}$ by generators of the Lie algebras $\mathrm{p}(1.1) \oplus \mathrm{p}(1.1)$ and $\mathrm{e}(3)$. The algebra $\mathrm{p}(1.1)^{\oplus 2}$ with generators $p_{n}, e_{n}^{ \pm}$, $n=1,2$, obeying commutation relations

$$
\begin{equation*}
\left[p_{n}, e_{k}^{ \pm}\right]= \pm \mathrm{i} \chi \mathrm{e}_{k}^{ \pm} \delta_{n k} \quad\left[p_{n}, p_{k}\right]=\left[e_{n}^{ \pm}, e_{k}^{ \pm}\right]=0 \quad e_{n}^{+} e_{n}^{--}=1 \tag{12}
\end{equation*}
$$

is connected to $\mathrm{A}^{(2)}$ by the following equations:

$$
\begin{array}{ll}
y_{0}=1 & y_{4}^{+}=-e_{1}^{+} \\
y_{1}=p_{1} p_{2}-e_{2}^{+} e_{1}^{-} & y_{4}^{-}=e_{2}^{-} \\
y_{2}=-\left(p_{1}+p_{2}\right) & y_{6}^{+}=p_{2} e_{1}^{+}  \tag{13}\\
y_{3}=-e_{2}^{-} e_{1}^{+} & y_{6}^{-}=-p_{1} e_{2}^{-} .
\end{array}
$$

The centre elements (10) have the values

$$
\begin{equation*}
Q_{0}=1 \quad Q_{1}=Q_{2}=0 \quad Q_{3}=-1 . \tag{14}
\end{equation*}
$$

Generators $J_{i}, x_{i}$ (5) of the Lie algebra e(3), provided that $l=\sum_{i=1}^{3} x_{i} J_{i}=0$, define that of $\mathrm{A}^{(2)}$ as follows $(x=2 \mathrm{i})$ :

$$
\begin{array}{ll}
y_{0}=1 & y_{4}=\mathrm{i} b x_{1} \\
y_{1}=-\left(J_{1}^{2}+J_{2}^{2}+\frac{1}{4}+2 \alpha / x_{3}^{2}\right) & y_{5}=\mathrm{i} b x_{2} \\
y_{2}=-2 J_{3} & y_{6}=-\frac{1}{2} \mathrm{i} b\left\{x_{3}, J_{1}\right\} \\
y_{3}=b^{2} x_{3}^{2} & y_{7}=-\frac{1}{2} \mathrm{i} b\left\{x_{3}, J_{2}\right\}
\end{array}
$$

where $\alpha, b$ are arbitrary constants. The centre elements (10) now take the values

$$
\begin{equation*}
Q_{0}=1 \quad Q_{1}=b^{2} \quad Q_{2}=0 \quad Q_{3}=b^{2}\left(2 \alpha-\frac{3}{4}\right) . \tag{16}
\end{equation*}
$$

Affine variables $y_{n}$ were originally used by Bechlivanidis and van Moerbeke [11] without any discussion of their algebraic properties.

In terms of $p(1.1) \oplus p(1.1)$ algebra (13) the $L$ operator (9) coincides with the monodromy matrix of the quantum periodic Toda lattice with two particles [4] and will not be considered further. In the $\mathrm{e}(3)$ realisation (15) the $L$ operator acquires the form
$L(u)=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)=\left(\begin{array}{cc}u^{2}-2 J_{3} u-J_{1}^{2}-J_{2}^{2}-\frac{1}{4}-2 \alpha / x_{3}^{2} & \mathrm{i} b\left(x_{+} u-\frac{1}{2}\left\{x_{3}, J_{+}\right\}\right) \\ \mathrm{i} b\left(x_{-} u-\frac{1}{2}\left\{x_{3}, J_{-}\right\}\right) & b^{2} x_{3}^{2}\end{array}\right)$
where $x_{ \pm}=x_{1} \pm \mathrm{i} x_{2}, J_{ \pm}=J_{1} \pm \mathrm{i} J_{2}$. The trace $\tau(u)$ of $L(u)$ is the generating polynomial of the constants of motion

$$
\begin{align*}
& \tau(u)=u^{2}-2 G u-2\left(H+\frac{1}{8}\right) \\
& H=\frac{1}{2}\left(J_{1}^{2}+J_{2}^{2}-b^{2} x_{3}^{2}\right)+\alpha / x_{3}^{2}  \tag{18}\\
& G=J_{3} .
\end{align*}
$$

Thus $L(u)$ corresponds to the special case of Neumann's system.
To find eigenstates of $\tau(u)$ in (18) we apply the method of separation of variables worked out in [3, 4] and developed in [5]. Separated variables are determined as commuting roots of the operator equation $C(u)=0$. This equation for the $L$ operator (17) has one nilpotent root, in contrast to the Goryachev-Chaplygin top and the Toda lattice [3-5]. To overcome this difficulty we transform the $L$ operator (17) into the $\tilde{L}$ operator

$$
\tilde{L}(u)=\frac{\sigma_{1}+\sigma_{3}}{\sqrt{2}} L(u) \frac{\sigma_{1}+\sigma_{3}}{\sqrt{2}}=\left(\begin{array}{cc}
\tilde{A} & \tilde{B}  \tag{19}\\
\tilde{C} & \tilde{D}
\end{array}\right)(u)
$$

where $\sigma_{i}$ are Pauli matrices. $\tilde{L}(u)$ satisfies equation (1) with the same $R$ matrix (3), the trace of $\tilde{L}(u)$ coincides with that of $L(u)$, and therefore $\tilde{L}(u)$ describes just the same dynamical system. The quantum determinant $d(u)$ of $\tilde{L}(u)$ is

$$
\begin{equation*}
d(u)=b^{2}\left(u^{2}-\frac{1}{4}-2 \alpha\right) \tag{20}
\end{equation*}
$$

Commuting separated variables are now defined as roots of the square equation

$$
\begin{equation*}
\tilde{C}(u)=0 \tag{21}
\end{equation*}
$$

and are given by

$$
\begin{equation*}
u_{1,2}=J_{3}+b x_{2} \pm\left[\left(J_{3}+b x_{2}\right)^{2}+J_{1}^{2}+\frac{1}{4}+2 \alpha / x_{3}^{2}+\left(J_{2}-b x_{3}\right)^{2}\right]^{1 / 2} . \tag{22}
\end{equation*}
$$

Variables $u_{1,2}$ are Hermitian operators provided that $\alpha \geqslant-\frac{1}{8}$; otherwise the operator under the square root is not positively defined.

Let us introduce two operators $m_{j}^{ \pm}$for each $u_{j}$ using Lagrange interpolation of the operator polynomials $\tilde{A}(u)$ and $\tilde{D}(u)$ as follows:

$$
\begin{gather*}
\tilde{A}(u)=\frac{1}{2}\left(u-u_{1}\right)\left(u-u_{2}\right)+\frac{u_{1}-u}{\left(u_{1}-u_{2}\right)^{1 / 2}} m_{2}^{-} \frac{1}{\left(u_{1}-u_{2}\right)^{1 / 2}} \\
+\frac{u-u_{2}}{\left(u_{1}-u_{2}\right)^{1 / 2}} m_{1}^{-} \frac{1}{\left(u_{1}-u_{2}\right)^{1 / 2}} \tag{23a}
\end{gather*}
$$

$$
\begin{gather*}
\tilde{D}(u)=\frac{1}{2}\left(u-u_{1}\right)\left(u-u_{2}\right)+\frac{u_{1}-u}{\left(u_{1}-u_{2}\right)^{1 / 2}} m_{2}^{+} \frac{1}{\left(u_{1}-u_{2}\right)^{1 / 2}} \\
+\frac{u-u_{2}}{\left(u_{1}-u_{2}\right)^{1 / 2}} m_{1}^{+} \frac{1}{\left(u_{1}-u_{2}\right)^{1 / 2}} \tag{23b}
\end{gather*}
$$

Explicit formulae for $m_{j}^{ \pm}$are

$$
\begin{align*}
& m_{j}^{-}=\frac{1}{\left(u_{1}-u_{2}\right)^{1 / 2}} \tilde{A}\left(u \stackrel{\frown}{=} u_{j}\right)\left(u_{1}-u_{2}\right)^{1 / 2}  \tag{24}\\
& m_{j}^{+}=\frac{1}{\left(u_{1}-u_{2}\right)^{1 / 2}} \tilde{D}\left(u \stackrel{\curvearrowright}{=} u_{j}\right)\left(u_{1}-u_{2}\right)^{1 / 2}
\end{align*}
$$

where the left substitution of $u_{1,2}$ in $\tilde{A}(u)$ and $\tilde{D}(u)$ is chosen. Notice that the difference $u_{1}-u_{2}$ is positively defined. Operators $u_{j}, m_{j}^{ \pm}$possess the following properties:

$$
\begin{align*}
& \left(m_{j}^{ \pm}\right)^{*}=m_{j}^{\mp} \quad u_{j}^{*}=u_{j}  \tag{25}\\
& {\left[m_{j}^{ \pm}, u_{k}\right]= \pm 2 \delta_{j k} m_{k}^{ \pm}}  \tag{26a}\\
& {\left[m_{j}^{ \pm}, m_{k}^{ \pm}\right]=\left[u_{j}, u_{k}\right]=0}  \tag{26b}\\
& m_{j}^{-} m_{j}^{+}=d\left(u_{j}-1\right) \quad m_{j}^{+} m_{j}^{-}=d\left(u_{j}+1\right) \tag{26c}
\end{align*}
$$

where $d(u)$ is the quantum determinant (20). Equations (25) and (26) are derived from the fundamental relation (1) by means of the technique developed in [3, 4]. The rewriting of the $L$ operator in terms of $u_{j}, m_{j}^{ \pm}$is single-valued.

Notice that the operators

$$
\begin{align*}
& Z_{n}^{(1)}=\frac{1}{4 b}\left(m_{n}^{+}+m_{n}^{-}\right) \\
& Z_{n}^{(2)}=\frac{\mathrm{i}}{4 b}\left(m_{n}^{+}-m_{n}^{-}\right)  \tag{27}\\
& Z_{n}^{(3)}=\frac{1}{2} u_{n}
\end{align*}
$$

obey the standard commutation relations of algebra $g=s o(2.1) \oplus \operatorname{so}(2.1)$

$$
\begin{equation*}
\left[Z_{m}^{(\alpha)}, Z_{n}^{(\beta)}\right]=-\mathrm{i} \delta_{m n} \varepsilon_{\alpha \beta \gamma} \Delta_{\gamma \delta} Z_{m}^{(\delta)} \quad \Delta=\operatorname{diag}(-1,-1,1) \tag{28}
\end{equation*}
$$

and the Casimir operators are

$$
\begin{equation*}
C_{n}=\Delta_{\gamma \beta} Z_{n}^{(\gamma)} Z_{n}^{(\beta)}=-\frac{3}{16}+\frac{1}{2} \alpha=j(j+1) \tag{29}
\end{equation*}
$$

where equations (20), (26c) and (27) were used. Eventually we have two Lie algebras so(2.1) with Hermitian generators (27). Consider discrete $D^{ \pm}$series of unitary irreducible representations of so(2.1). In accordance with (29) we are interested in the following 'spins':

$$
\begin{equation*}
j_{ \pm}=-\frac{1}{2} \pm\left(\frac{1}{16}+\frac{1}{2} \alpha\right)^{1 / 2} \tag{30}
\end{equation*}
$$

In order to stay in the $D^{ \pm}$series of irreducible representations of so(2.1) we have to restrict $\alpha$ by

$$
\begin{equation*}
-\frac{1}{8} \leqslant \alpha<\frac{3}{8} \tag{31}
\end{equation*}
$$

Then choosing a representation in which compact generators $Z_{n}^{(3)}=\frac{1}{2} u_{n}$ are diagonal, 'spin' values $j_{ \pm}$(30) define the spectrum $S$ of operators $u_{1,2}$ which consists of the two semi-infinite equidistant lattices $S=S_{+} \cup S_{-}$
$S_{ \pm}=\left\{\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}:\left(u_{1}, u_{2}\right)=\left(-2 j_{ \pm}+2 n_{1}, 2 j_{ \pm}-2 n_{2}\right), n_{1}, n_{2}=0,1,2, \ldots\right\}$
where we put $D^{+}$for $u_{1}$ and $D^{-}$for $u_{2}$ in accordance with the inequality $u_{1}>u_{2}$ (22). The eigenfunction space of the system can be realised as the space $\mathscr{L}_{2}(S)$ of squaresummable functions on the spectrum $S$ :

$$
\begin{equation*}
\mathscr{L}_{2}(S)=\left\{f\left(u_{1}, u_{2}\right):\left(u_{1}, u_{2}\right) \in S, \sum_{\left(u_{1}, u_{2}\right) \in S}\left|f\left(u_{1}, u_{2}\right)\right|^{2}<\infty\right\} . \tag{33}
\end{equation*}
$$

It is easy to check that the operators $m_{n}^{ \pm}$, acting on eigenfunctions $\varphi$ of $u_{n}$,

$$
\left(u_{n} \varphi\right)\left(u_{1}, u_{2}\right)=u_{n} \varphi\left(u_{1}, u_{2}\right)
$$

as follows:

$$
\begin{align*}
& \left(m_{1}^{ \pm} \varphi\right)\left(u_{1}, u_{2}\right)=d^{1 / 2}\left(u_{1} \pm 1\right) \varphi\left(u_{1} \pm 2, u_{2}\right) \\
& \left(m_{2}^{ \pm} \varphi\right)\left(u_{1}, u_{2}\right)=d^{1 / 2}\left(u_{2} \pm 1\right) \varphi\left(u_{1}, u_{2} \pm 2\right) \tag{34}
\end{align*}
$$

obey all the relations (25) and (26). Further, we consider the spectral problem for the generating function $\tau(u)=\tilde{A}(u)+\tilde{D}(u)=u^{2}-2 G u-2\left(H+\frac{1}{8}\right)$. It has the form (see (23))

$$
\begin{align*}
& (t(u) f)\left(u_{1}, u_{2}\right) \\
& =\left(u-u_{1}\right)\left(u-u_{2}\right) f\left(u_{1}, u_{2}\right) \\
& \\
& \quad+\left(u-u_{2}\right)\left(u_{1}-u_{2}\right)^{-1 / 2}\left(m_{1}^{+}+m_{1}^{-}\right)\left(u_{1}-u_{2}\right)^{-1 / 2} f\left(u_{1}, u_{2}\right)  \tag{35}\\
& \\
& \quad+\left(u_{1}-u\right)\left(u_{1}-u_{2}\right)^{-1 / 2}\left(m_{2}^{+}+m_{2}^{-}\right)\left(u_{1}-u_{2}\right)^{-1 / 2} f\left(u_{1}, u_{2}\right)
\end{align*}
$$

where $f \in \mathscr{L}_{2}(S)$ is the eigenfunction of $\tau(u)$ and $t(u)=u^{2}-2 m u-2\left(h+\frac{1}{8}\right)$, where $m$, $h$ are eigenvalues of $G$ and $H$, respectively. It appears that, for the separation of variables $u_{1}$ and $u_{2}$, we ought to write

$$
\begin{equation*}
f\left(u_{1}, u_{2}\right)=\left(u_{1}-u_{2}\right)^{1 / 2} \varphi\left(u_{1}, u_{2}\right) . \tag{36}
\end{equation*}
$$

Now, considering $u=u_{n}, n=1,2$, in (35), we have two separated one-dimensional equations:

$$
\begin{equation*}
t\left(u_{n}\right) \varphi_{n}\left(u_{n}\right)=d^{1 / 2}\left(u_{n}-1\right) \varphi_{n}\left(u_{n}-2\right)+d^{1 / 2}\left(u_{n}+1\right) \varphi_{n}\left(u_{n}+2\right) \tag{37}
\end{equation*}
$$

where the function $\varphi\left(u_{1}, u_{2}\right)$ is factorised:

$$
\begin{equation*}
\varphi\left(u_{1}, u_{2}\right)=\varphi_{1}\left(u_{1}\right) \varphi_{2}\left(u_{2}\right) \tag{38}
\end{equation*}
$$

Such a form of the function $\varphi\left(u_{1}, u_{2}\right)$ allows us to say something about separation of variables and reflects the structure of the direct sum of the algebra (27) $\mathrm{g}=\operatorname{so}(2.1) \oplus$ so(2.1).

Two one-dimensional spectral problems are the three-term recursion relations for the coefficients $\varphi_{n}\left(u_{n}\right)$, where the variables $u_{1,2}$ belong to the lattice $S$ depending on the value of $\alpha$. A complete numerical calculation of the eigenstates will be published elsewhere.

In conclusion we connect the special case of Neumann's system governed by the Hamiltonian (18) with KCGT (8) and construct the $L$ operator of the latter. In our case the representations of the algebras $\mathscr{T}_{ \pm}(u)$ are

$$
\begin{align*}
& \mathscr{T}_{-}(u)=L(u) K_{-}\left(u-\frac{1}{2} \mathrm{i} x\right) \sigma_{2} L^{\top}(-u) \sigma_{2} \\
& \mathscr{T}_{+}(u)=K_{+}\left(u+\frac{1}{2} \mathrm{i} x\right) \tag{39}
\end{align*}
$$

where $L(u)$ is the $L$ operator (17) and the $c$-number matrices $K_{ \pm}(u)$ have the form

$$
K_{-}(u)=\left(\begin{array}{cc}
\alpha_{1} & u  \tag{40}\\
-\beta_{1} u & \alpha_{1}
\end{array}\right) \quad K_{+}(u)=\left(\begin{array}{cc}
\alpha_{2} & \beta_{2} u \\
-u & \alpha_{2}
\end{array}\right)
$$

where $\alpha_{i}, \beta_{i}$ are arbitrary complex constants. Then the generating function $\tau(u)=$ $\operatorname{Tr} \mathscr{T}_{+}(u) \mathscr{T}_{-}(u)$ of the constants of motion gives us an integrable system with the Hamiltonian of KCGT

$$
\begin{equation*}
H=\frac{1}{2}\left(J_{1}^{2}+J_{2}^{2}+2 J_{3}^{2}\right)+c_{1} x_{1}+c_{2} x_{2}+c_{3}\left(x_{1}^{2}-x_{2}^{2}\right)+c_{4} x_{1} x_{2}+c_{5} / x_{3}^{2} \tag{41}
\end{equation*}
$$

where $c_{1}=\frac{1}{2} \mathrm{i} b\left(\alpha_{2}-\alpha_{1}\right), c_{2}=\frac{1}{2} b\left(\alpha_{1}+\alpha_{2}\right), c_{3}=-\frac{1}{4} b^{2}\left(\beta_{1}+\beta_{2}\right), c_{4}=\frac{1}{2} b^{2} \mathrm{i}\left(\beta_{2}-\beta_{1}\right), c_{5}=\alpha$. The separation of variables for ксGT is still unknown.

We are indebted to I V Komarov and E K Sklyanin for help in preparing this letter.

Note added in proof. We must mention that the eigenfunctions of $\tau(u)$ in (18) in terms of Euler angles are connected to the special polyspheroidal harmonics.

## References

[1] Faddeev L D 1984 Les Houches Lectures ed J-B Zuber and R Stora (Amsterdam: North-Holland) pp 719-56
[2] Kulish P P and Sklyanin E K 1982 Integrable Quantum Field Theories (Lecture Notes in Physics 151) ed J Hietarinta and C Montonen (Berlin: Springer) pp 61-119
[3] Sklyanin E K 1985 J. Sov. Math. 313417
[4] Sklyanin E K 1985 Non-linear Equations in Classical and Quantum Field Theory (Lecture Notes in Physics 226) ed H Sanchez (Berlin: Springer) pp 196-233
[5] Komarov I V and Kuznetsov V B 1987 Zap. Nauch. Semin. LOMI 164134
[6] Mumford D 1983 Tata Lectures on Theta vol 1 (Basle: Birkhauser); 1984 Tata Lectures on Theta vol 2 (Basle: Birkhauser)
[7] Sklyanin E K 1988 J. Phys. A: Math. Gen. 21 2375-89
[8] Chaplygin S A 1903 Trudy Otdel. Fis. Nauk Obshch. Lubit. Estestv. 11 no 2, 3
[9] Goryachev D N 1916 Izv. Varsh. Univ. 33
[10] Sklyanin E K 1982 Funkts. Anal. Ego Prilog. 16 no 4, 27-34
[11] Bechlivanidis S and van Moerbeke P 1987 Commun. Math. Phys. 110 317-24

